Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Am J Pathol ; 193(6): 690-701, 2023 06.
Article in English | MEDLINE | ID: covidwho-2312845

ABSTRACT

Clinical evidence of vascular dysfunction and hypercoagulability as well as pulmonary vascular damage and microthrombosis are frequently reported in severe cases of human coronavirus disease 2019 (COVID-19). Syrian golden hamsters recapitulate histopathologic pulmonary vascular lesions reported in patients with COVID-19. Herein, special staining techniques and transmission electron microscopy further define vascular pathologies in a Syrian golden hamster model of human COVID-19. The results show that regions of active pulmonary inflammation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are characterized by ultrastructural evidence of endothelial damage with platelet marginalization and both perivascular and subendothelial macrophage infiltration. SARS-CoV-2 antigen/RNA was not detectable within affected blood vessels. Taken together, these findings suggest that the prominent microscopic vascular lesions in SARS-CoV-2-inoculated hamsters likely occur due to endothelial damage followed by platelet and macrophage infiltration.


Subject(s)
COVID-19 , Vascular Diseases , Cricetinae , Animals , Humans , Mesocricetus , SARS-CoV-2 , COVID-19/pathology , Lung/pathology , Vascular Diseases/pathology , Disease Models, Animal
2.
Int J Mol Sci ; 24(9)2023 May 04.
Article in English | MEDLINE | ID: covidwho-2320117

ABSTRACT

The pulmonary endothelium is a highly regulated organ that performs a wide range of functions under physiological and pathological conditions. Since endothelial dysfunction has been demonstrated to play a direct role in sepsis and acute respiratory distress syndrome, its role in COVID-19 has also been extensively investigated. Indeed, apart from the COVID-19-associated coagulopathy biomarkers, new biomarkers were recognised early during the pandemic, including markers of endothelial cell activation or injury. We systematically searched the literature up to 10 March 2023 for studies examining the association between acute and long COVID-19 severity and outcomes and endothelial biomarkers.


Subject(s)
COVID-19 , Vascular Diseases , Humans , COVID-19/complications , Post-Acute COVID-19 Syndrome , Vascular Diseases/pathology , Lung/pathology , Biomarkers
3.
Int J Mol Sci ; 23(23)2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2143237

ABSTRACT

Vascular occlusions in patients with coronavirus diseases 2019 (COVID-19) have been frequently reported in severe outcomes mainly due to a dysregulation of neutrophils mediating neutrophil extracellular trap (NET) formation. Lung specimens from patients with COVID-19 have previously shown a dynamic morphology, categorized into three types of pleomorphic occurrence based on histological findings in this study. These vascular occlusions in lung specimens were also detected using native endogenous fluorescence or NEF in a label-free method. The three types of vascular occlusions exhibit morphology of DNA rich neutrophil elastase (NE) poor (type I), NE rich DNA poor (type II), and DNA and NE rich (type III) cohort of eleven patients with six males and five females. Age and gender have been presented in this study as influencing variables linking the occurrence of several occlusions with pleomorphic contents within a patient specimen and amongst them. This study reports the categorization of pleomorphic occlusions in patients with COVID-19 and the detection of these occlusions in a label-free method utilizing NEF.


Subject(s)
COVID-19 , Extracellular Traps , Vascular Diseases , Male , Female , Humans , COVID-19/complications , COVID-19/pathology , SARS-CoV-2 , Lung/pathology , Neutrophils/pathology , Vascular Diseases/pathology
4.
PLoS One ; 17(8): e0272237, 2022.
Article in English | MEDLINE | ID: covidwho-2002304

ABSTRACT

OBJECTIVE: By analyzing the pathological characteristics and clinical data of renal biopsy in our hospital in the past 20 years, to further understand the epidemic characteristics and pathological changes of primary glomerular disease, and to provide regional data for the big data of kidney disease in my country. METHODS: A retrospective analysis of 9448 patients with primary glomerular disease who were hospitalized in our hospital from January 1, 2000 to December 31, 2019, aged 18 years or older, and undergoing renal biopsy. Divided every 5 years into a group, a total of 4 groups (first group 2000.1.1-2004.12.31, second groups 2005.1.1-2009.12.31; third groups 2010.1.1-2014.12.31, fourth groups 2015.1.1-2019.12.31). RESULTS: ① There were more males than females, and male: female vs 1.53:1. The proportion of men in the past five years has increased compared with the previous 15 years. ② Mostly middle-aged, with a median age of 41.39 years old. The age is increasing over time. There are differences between the four groups, P <0.001; ③ The most common clinical manifestations are nephrotic syndrome, followed by chronic glomerulonephritis. Occult glomerulonephritis, the proportion of patients with nephrotic syndrome increases over time, first to fourth group (40.08%< 42.64% < 47.08%< 53.69%); ④ The most common pathology type from 2000 to 2009 was mesangial proliferative glomerulonephritis. IgA nephropathy was the most common type from 2010 to 2014, but the proportion of membranous nephropathy increased year by year, and it became the most common pathological type from 2015 to 2019; ⑤ The clinical and pathological manifestations of different genders are different, but there is no statistical difference. CONCLUSION: In the past 20 years, the primary glomerular disease is mainly middle-aged. There are more men than women. The most common type of clinical manifestation is nephrotic syndrome. The pathological type is mesangial proliferative glomerulonephritis. Over time, the average age is increasing, and the proportion of patients with renal syndrome is increasing. IgA nephropathy is the most common pathological type from 2010 to 2014, and membranous nephropathy has become the main pathological type in the past 5 years.


Subject(s)
Glomerulonephritis, IGA , Glomerulonephritis, Membranous , Glomerulonephritis , Nephrotic Syndrome , Vascular Diseases , Adult , Biopsy , Female , Glomerulonephritis/epidemiology , Glomerulonephritis/pathology , Glomerulonephritis, IGA/epidemiology , Glomerulonephritis, IGA/pathology , Glomerulonephritis, Membranous/epidemiology , Glomerulonephritis, Membranous/pathology , Humans , Kidney/pathology , Male , Middle Aged , Nephrotic Syndrome/epidemiology , Nephrotic Syndrome/pathology , Retrospective Studies , Vascular Diseases/pathology
5.
Front Immunol ; 13: 868679, 2022.
Article in English | MEDLINE | ID: covidwho-1785351

ABSTRACT

Coronavirus disease 2019 (COVID-19), an infectious respiratory disease propagated by a new virus known as Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), has resulted in global healthcare crises. Emerging evidence from patients with COVID-19 suggests that endothelial cell damage plays a central role in COVID-19 pathogenesis and could be a major contributor to the severity and mortality of COVID-19. Like other infectious diseases, the pathogenesis of COVID-19 is closely associated with metabolic processes. Lactate, a potential biomarker in COVID-19, has recently been shown to mediate endothelial barrier dysfunction. In this review, we provide an overview of cardiovascular injuries and metabolic alterations caused by SARS-CoV-2 infection. We also propose that lactate plays a potential role in COVID-19-driven endothelial cell injury.


Subject(s)
COVID-19 , Vascular Diseases , COVID-19/complications , Endothelial Cells/metabolism , Endothelium , Humans , Lactic Acid/metabolism , SARS-CoV-2 , Vascular Diseases/pathology
6.
Biochem Pharmacol ; 197: 114909, 2022 03.
Article in English | MEDLINE | ID: covidwho-1616378

ABSTRACT

Vascular endothelial cells are major participants in and regulators of immune responses and inflammation. Vascular endotheliitis is regarded as a host immune-inflammatory response of the endothelium forming the inner surface of blood vessels in association with a direct consequence of infectious pathogen invasion. Vascular endotheliitis and consequent endothelial dysfunction can be a principle determinant of microvascular failure, which would favor impaired perfusion, tissue hypoxia, and subsequent organ failure. Emerging evidence suggests the role of vascular endotheliitis in the pathogenesis of coronavirus disease 2019 (COVID-19) and its related complications. Thus, once initiated, vascular endotheliitis and resultant cytokine storm cause systemic hyperinflammation and a thrombotic phenomenon in COVID-19, leading to acute respiratory distress syndrome and widespread organ damage. Vascular endotheliitis also appears to be a contributory factor to vasculopathy and coagulopathy in sepsis that is defined as life-threatening organ dysfunction due to a dysregulated response of the host to infection. Therefore, protecting endothelial cells and reversing vascular endotheliitis may be a leading therapeutic goal for these diseases associated with vascular endotheliitis. In this review, we outline the etiological and pathogenic importance of vascular endotheliitis in infection-related inflammatory diseases, including COVID-19, and possible mechanisms leading to vascular endotheliitis. We also discuss pharmacological agents which may be now considered as potential endotheliitis-based treatment modalities for those diseases.


Subject(s)
COVID-19/pathology , Endothelial Cells/pathology , Endothelium, Vascular/pathology , Vascular Diseases/pathology , COVID-19/complications , COVID-19/immunology , Endothelial Cells/drug effects , Endothelial Cells/immunology , Endothelium, Vascular/drug effects , Endothelium, Vascular/immunology , Glucocorticoids/pharmacology , Glucocorticoids/therapeutic use , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Sepsis/drug therapy , Sepsis/etiology , Sepsis/immunology , Sepsis/pathology , Vascular Diseases/drug therapy , Vascular Diseases/etiology , Vascular Diseases/immunology , COVID-19 Drug Treatment
7.
Oxid Med Cell Longev ; 2021: 8671713, 2021.
Article in English | MEDLINE | ID: covidwho-1378091

ABSTRACT

The outbreak of the COVID-19 pandemic represents an ongoing healthcare emergency responsible for more than 3.4 million deaths worldwide. COVID-19 is the disease caused by SARS-CoV-2, a virus that targets not only the lungs but also the cardiovascular system. COVID-19 can manifest with a wide range of clinical manifestations, from mild symptoms to severe forms of the disease, characterized by respiratory failure due to severe alveolar damage. Several studies investigated the underlying mechanisms of the severe lung damage associated with SARS-CoV-2 infection and revealed that the respiratory failure associated with COVID-19 is the consequence not only of acute respiratory distress syndrome but also of macro- and microvascular involvement. New observations show that COVID-19 is an endothelial disease, and the consequent endotheliopathy is responsible for inflammation, cytokine storm, oxidative stress, and coagulopathy. In this review, we show the central role of endothelial dysfunction, inflammation, and oxidative stress in the COVID-19 pathogenesis and present the therapeutic targets deriving from this endotheliopathy.


Subject(s)
COVID-19/complications , Cytokine Release Syndrome/pathology , Endothelium, Vascular/pathology , Inflammation/pathology , Oxidative Stress , SARS-CoV-2/isolation & purification , Vascular Diseases/pathology , COVID-19/virology , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/therapy , Endothelium, Vascular/virology , Humans , Inflammation/etiology , Inflammation/therapy , Vascular Diseases/etiology , Vascular Diseases/therapy
8.
Int J Mol Sci ; 21(24)2020 Dec 19.
Article in English | MEDLINE | ID: covidwho-1030463

ABSTRACT

The new coronavirus disease-2019 (COVID-19), which is spreading around the world and threatening people, is easily infecting a large number of people through airborne droplets; moreover, patients with hypertension, diabetes, obesity, and cardiovascular disease are more likely to experience severe conditions. Vascular endothelial dysfunction has been suggested as a common feature of high-risk patients prone to severe COVID-19, and measurement of vascular endothelial function may be recommended for predicting severe conditions in high-risk patients with COVID-19. However, fragmented vascular endothelial glycocalyx (VEGLX) is elevated in COVID-19 patients, suggesting that it may be useful as a prognostic indicator. Although the relationship between VEGLX and severe acute respiratory syndrome coronavirus 2 infections has not been well studied, some investigations into COVID-19 have clarified the relationship between VEGLX and the mechanism that leads to severe conditions. Clarifying the usefulness of VEGLX assessment as a predictive indicator of the development of severe complications is important as a strategy for confronting pandemics caused by new viruses with a high affinity for the vascular endothelium that may recur in the future.


Subject(s)
COVID-19/pathology , Endothelium, Vascular/pathology , Glycocalyx/pathology , Vascular Diseases/pathology , Endothelial Cells/pathology , Humans , Lung/pathology , Lung/virology , Prognosis , SARS-CoV-2 , Vascular Diseases/virology
9.
Arterioscler Thromb Vasc Biol ; 40(10): 2404-2407, 2020 10.
Article in English | MEDLINE | ID: covidwho-1015733

ABSTRACT

OBJECTIVE: Alveolar-capillary endothelial cells can be activated by severe acute respiratory syndrome coronavirus 2 infection leading to cytokine release. This could trigger endothelial dysfunction, pyroptosis, and thrombosis, which are the vascular changes, commonly referred to as coronavirus disease 2019 (COVID-19) endotheliopathy. Thus, this study aimed to identify tissue biomarkers associated with endothelial activation/dysfunction and the pyroptosis pathway in the lung samples of patients with COVID-19 and to compare them to pandemic influenza A virus H1N1 subtype 2009 and control cases. Approach and Results: Postmortem lung samples (COVID-19 group =6 cases; H1N1 group =10 cases, and control group =11 cases) were analyzed using immunohistochemistry and the following monoclonal primary antibodies: anti-IL (interleukin)-6, anti-TNF (tumor necrosis factor)-α, anti-ICAM-1 (intercellular adhesion molecule 1), and anticaspase-1. From the result, IL-6, TNF-α, ICAM-1, and caspase-1 showed higher tissue expression in the COVID-19 group than in the H1N1 and control groups. CONCLUSIONS: Our results demonstrated endothelial dysfunction and suggested the participation of the pyroptosis pathway in the pulmonary samples. These conditions might lead to systemic thrombotic events that could impair the clinical staff's efforts to avoid fatal outcomes. One of the health professionals' goals should be to identify the high risk of thrombosis patients early to block endotheliopathy and its consequences.


Subject(s)
Coronavirus Infections/pathology , Endothelial Cells/cytology , Endothelium, Vascular/pathology , Pneumonia, Viral/pathology , Thrombosis/pathology , Vascular Diseases/pathology , Autopsy , Biopsy, Needle , COVID-19 , Cause of Death , Coronavirus Infections/mortality , Endothelial Cells/pathology , Endothelium, Vascular/physiopathology , Female , Humans , Immunohistochemistry , Male , Pandemics , Pneumonia, Viral/mortality , Risk Assessment , Thrombosis/etiology , Thrombosis/mortality , Vascular Diseases/mortality , Vascular Diseases/physiopathology
11.
J Infect Dis ; 222(11): 1807-1815, 2020 11 09.
Article in English | MEDLINE | ID: covidwho-919293

ABSTRACT

BACKGROUND: Descriptions of the pathological features of coronavirus disease-2019 (COVID-19) caused by the novel zoonotic pathogen severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emanate from tissue biopsies, case reports, and small postmortem studies restricted to the lung and specific organs. Whole-body autopsy studies of COVID-19 patients have been sparse. METHODS: To further define the pathology caused by SARS-CoV-2 across all body organs, we performed autopsies on 22 patients with COVID-19 (18 with comorbidities and 4 without comorbidities) who died at the National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS Hospital, Rome, Italy. Tissues from the lung, heart, liver, kidney, spleen, and bone marrow (but not the brain) were examined. Only lung tissues were subject to transmission electron microscopy. RESULTS: COVID-19 caused multisystem pathology. Pulmonary and cardiovascular involvement were dominant pathological features. Extrapulmonary manifestations included hepatic, kidney, splenic, and bone marrow involvement, and microvascular injury and thrombosis were also detected. These findings were similar in patients with or without preexisting medical comorbidities. CONCLUSIONS: SARS-CoV-2 infection causes multisystem disease and significant pathology in most organs in patients with and without comorbidities.


Subject(s)
COVID-19/pathology , Adult , Aged , Aged, 80 and over , Autopsy/methods , Bone Marrow/pathology , COVID-19/epidemiology , COVID-19/virology , Comorbidity , Female , Humans , Italy/epidemiology , Kidney/pathology , Liver/pathology , Lung/pathology , Male , Middle Aged , Spleen/pathology , Thrombosis/pathology , Vascular Diseases/pathology , Vascular Diseases/virology
12.
Int J Dermatol ; 60(1): 73-80, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-919217

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a systemic multi-organ viral illness. Previous studies have found that many patients had a procoagulant state and/or severe hypoxemia with relatively well-preserved lung mechanics. Mechanisms underlying the damage to vascular tissues are not well-elucidated yet. Histological data in COVID-19 patients are still limited and are mainly focused on post-mortem analysis. Given that the skin is affected by COVID-19 and the relative ease of its histological examination, we aimed to examine the histology of skin lesions in COVID-19 patients to better understand the disease's pathology. METHODS: Five skin lesions from COVID-19 adult patients were selected for a deep histological tissue examination. RESULTS: A strong vasculopathic reaction pattern based on prominent vascular endothelial and myointimal cell growth was identified. Endothelial cell distortion generated vascular lumen obliteration and striking erythrocyte and serum extravasation. Significant deposition of C4d and C3 throughout the vascular cell wall was also identified. A regenerative epidermal hyperplasia with tissue structure preservation was also observed. CONCLUSIONS: COVID-19 could comprise an obliterative microangiopathy consisting on endothelial and myointimal growth with complement activation. This mechanism, together with the increased vascular permeability identified, could contribute to obliteration of the vascular lumen and hemorrhage in COVID-19. Thus, anticoagulation by itself could not completely reverse vascular lumen obliteration, with consequent increased risk of hemorrhage. Findings of this study could contribute to a better understanding of physiopathological mechanisms underlying COVID-19 on living patients and could help further studies find potential targets for specific therapeutic interventions in severe cases.


Subject(s)
COVID-19/complications , Endothelial Cells/pathology , Myocytes, Smooth Muscle/pathology , Skin Diseases/pathology , Vascular Diseases/pathology , Aged , Blood Vessels/pathology , CD3 Complex/metabolism , CD4 Antigens/metabolism , Endothelium/metabolism , Endothelium/pathology , Humans , Hyperplasia/pathology , Hyperplasia/virology , SARS-CoV-2 , Skin/blood supply , Skin Diseases/virology , Vascular Diseases/virology
13.
Am J Dermatopathol ; 43(4): e47-e50, 2021 Apr 01.
Article in English | MEDLINE | ID: covidwho-913264

ABSTRACT

ABSTRACT: Biopsies were taken from 4 patients who presented to their dermatologist with violaceous papules and plaques of the dorsal toes (COVID Toes) associated with varying degrees of severe acute respiratory syndrome coronavirus 2 exposure and COVID-19 testing. Major histopathologic findings were lymphocytic eccrine inflammation and a spectrum of vasculopathic findings to include superficial and deep angiocentric-perivascular lymphocytic inflammation, lymphocytes in vessel walls (lymphocytic vasculitis), endothelial swelling, red blood cell extravasation, and focal deposits of fibrin in both vessel lumina, and vessel walls. Interface changes were observed to include vacuolopathy and apoptotic keratinocytes at the basement membrane. Immunostains showed a dominant T-cell lineage (positive for T-cell receptor beta, CD2, CD3, CD5, and CD7). B-cells were rare and clusters of CD123-positive dermal plasmacytoid dendritic cells were observed surrounding eccrine clusters and some perivascular zones. The consistent perieccrine and vasculopathic features represent important pathologic findings in the diagnosis of COVID toes and are suggestive of pathogenetic mechanisms. Clinicopathologic correlation, the epidemiological backdrop, and the current worldwide COVID-19 pandemic favor a viral causation and should alert the physician to initiate a workup and the appropriate use of COVID-19 testing.


Subject(s)
COVID-19/complications , COVID-19/pathology , Chilblains/virology , Purpura/virology , Toes/pathology , Vascular Diseases/virology , Adult , Chilblains/pathology , Female , Humans , Male , Middle Aged , Purpura/pathology , SARS-CoV-2 , Vascular Diseases/pathology , Young Adult
14.
Histopathology ; 77(2): 198-209, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-889739

ABSTRACT

AIMS: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly evolved into a sweeping pandemic. Its major manifestation is in the respiratory tract, and the general extent of organ involvement and the microscopic changes in the lungs remain insufficiently characterised. Autopsies are essential to elucidate COVID-19-associated organ alterations. METHODS AND RESULTS: This article reports the autopsy findings of 21 COVID-19 patients hospitalised at the University Hospital Basel and at the Cantonal Hospital Baselland, Switzerland. An in-corpore technique was performed to ensure optimal staff safety. The primary cause of death was respiratory failure with exudative diffuse alveolar damage and massive capillary congestion, often accompanied by microthrombi despite anticoagulation. Ten cases showed superimposed bronchopneumonia. Further findings included pulmonary embolism (n = 4), alveolar haemorrhage (n = 3), and vasculitis (n = 1). Pathologies in other organ systems were predominantly attributable to shock; three patients showed signs of generalised and five of pulmonary thrombotic microangiopathy. Six patients were diagnosed with senile cardiac amyloidosis upon autopsy. Most patients suffered from one or more comorbidities (hypertension, obesity, cardiovascular diseases, and diabetes mellitus). Additionally, there was an overall predominance of males and individuals with blood group A (81% and 65%, respectively). All relevant histological slides are linked as open-source scans in supplementary files. CONCLUSIONS: This study provides an overview of postmortem findings in COVID-19 cases, implying that hypertensive, elderly, obese, male individuals with severe cardiovascular comorbidities as well as those with blood group A may have a lower threshold of tolerance for COVID-19. This provides a pathophysiological explanation for higher mortality rates among these patients.


Subject(s)
COVID-19/pathology , Capillaries/pathology , Vascular Diseases/pathology , Vascular Diseases/virology , Aged , Aged, 80 and over , Autopsy , Capillaries/virology , Female , Humans , Lung/pathology , Male , Middle Aged , SARS-CoV-2
15.
Cell ; 183(5): 1354-1366.e13, 2020 11 25.
Article in English | MEDLINE | ID: covidwho-871817

ABSTRACT

The COVID-19 pandemic has led to extensive morbidity and mortality throughout the world. Clinical features that drive SARS-CoV-2 pathogenesis in humans include inflammation and thrombosis, but the mechanistic details underlying these processes remain to be determined. In this study, we demonstrate endothelial disruption and vascular thrombosis in histopathologic sections of lungs from both humans and rhesus macaques infected with SARS-CoV-2. To define key molecular pathways associated with SARS-CoV-2 pathogenesis in macaques, we performed transcriptomic analyses of bronchoalveolar lavage and peripheral blood and proteomic analyses of serum. We observed macrophage infiltrates in lung and upregulation of macrophage, complement, platelet activation, thrombosis, and proinflammatory markers, including C-reactive protein, MX1, IL-6, IL-1, IL-8, TNFα, and NF-κB. These results suggest a model in which critical interactions between inflammatory and thrombosis pathways lead to SARS-CoV-2-induced vascular disease. Our findings suggest potential therapeutic targets for COVID-19.


Subject(s)
COVID-19/complications , COVID-19/immunology , SARS-CoV-2/genetics , Thrombosis/complications , Vascular Diseases/complications , Aged, 80 and over , Animals , Bronchoalveolar Lavage , C-Reactive Protein/analysis , COVID-19/blood , COVID-19/pathology , Complement Activation , Cytokines/blood , Female , Humans , Inflammation/blood , Inflammation/immunology , Inflammation/virology , Lung/pathology , Macaca mulatta , Macrophages/immunology , Male , Platelet Activation , Thrombosis/blood , Thrombosis/pathology , Transcriptome , Vascular Diseases/blood , Vascular Diseases/pathology
16.
Microvasc Res ; 133: 104071, 2021 01.
Article in English | MEDLINE | ID: covidwho-850352

ABSTRACT

OBJECTIVE: Increasing evidence points to endothelial dysfunction as a key pathophysiological factor in coronavirus disease-2019 (COVID-19). No specific methods have been identified to predict, detect and quantify the microvascular alterations during COVID-19. Our aim was to assess microvasculature through nailfold videocapillaroscopy (NVC) in COVID-19 patients. METHODS: We performed NVC in patients with a confirmed diagnosis of COVID-19 pneumonia. Elementary alterations were reported for each finger according to a semi-quantitative score. Capillary density, number of enlarged and giant capillaries, number of micro-hemorrhages and micro-thrombosis (NEMO score) were registered. RESULTS: We enrolled 82 patients (mean age 58.8 ± 13.2 years, male 68.3%) of whom 28 during the hospitalization and 54 after recovery and hospital discharge. At NVC examination we found abnormalities classifiable as non-specific pattern in 53 patients (64.6%). Common abnormalities were pericapillary edema (80.5%), enlarged capillaries (61.0%), sludge flow (53.7%), meandering capillaries and reduced capillary density (50.0%). No pictures suggestive of scleroderma pattern have been observed. Acute COVID-19 patients, compared to recovered patients, showed a higher prevalence of hemosiderin deposits as a result of micro-hemorrhages (P = .027) and micro-thrombosis (P < .016), sludge flow (P = .001), and pericapillary edema (P < .001), while recovered patients showed a higher prevalence of enlarged capillaries (P < .001), loss of capillaries (P = .002), meandering capillaries (P < .001), and empty dermal papillae (P = .006). CONCLUSION: COVID-19 patients present microvascular abnormalities at NVC. Currently ill and recovered subjects are characterized by a different distribution of elementary capillaroscopic alterations, resembling acute and post-acute microvascular damage. Further studies are needed to assess the clinical relevance of NVC in COVID-19.


Subject(s)
COVID-19/complications , Capillaries/pathology , Microscopic Angioscopy , Nails/blood supply , Vascular Diseases/pathology , Aged , COVID-19/diagnosis , COVID-19/therapy , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Vascular Diseases/etiology
20.
Lancet Haematol ; 7(8): e575-e582, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-624336

ABSTRACT

BACKGROUND: An important feature of severe acute respiratory syndrome coronavirus 2 pathogenesis is COVID-19-associated coagulopathy, characterised by increased thrombotic and microvascular complications. Previous studies have suggested a role for endothelial cell injury in COVID-19-associated coagulopathy. To determine whether endotheliopathy is involved in COVID-19-associated coagulopathy pathogenesis, we assessed markers of endothelial cell and platelet activation in critically and non-critically ill patients admitted to the hospital with COVID-19. METHODS: In this single-centre cross-sectional study, hospitalised adult (≥18 years) patients with laboratory-confirmed COVID-19 were identified in the medical intensive care unit (ICU) or a specialised non-ICU COVID-19 floor in our hospital. Asymptomatic, non-hospitalised controls were recruited as a comparator group for biomarkers that did not have a reference range. We assessed markers of endothelial cell and platelet activation, including von Willebrand Factor (VWF) antigen, soluble thrombomodulin, soluble P-selectin, and soluble CD40 ligand, as well as coagulation factors, endogenous anticoagulants, and fibrinolytic enzymes. We compared the level of each marker in ICU patients, non-ICU patients, and controls, where applicable. We assessed correlations between these laboratory results with clinical outcomes, including hospital discharge and mortality. Kaplan-Meier analysis was used to further explore the association between biochemical markers and survival. FINDINGS: 68 patients with COVID-19 were included in the study from April 13 to April 24, 2020, including 48 ICU and 20 non-ICU patients, as well as 13 non-hospitalised, asymptomatic controls. Markers of endothelial cell and platelet activation were significantly elevated in ICU patients compared with non-ICU patients, including VWF antigen (mean 565% [SD 199] in ICU patients vs 278% [133] in non-ICU patients; p<0·0001) and soluble P-selectin (15·9 ng/mL [4·8] vs 11·2 ng/mL [3·1]; p=0·0014). VWF antigen concentrations were also elevated above the normal range in 16 (80%) of 20 non-ICU patients. We found mortality to be significantly correlated with VWF antigen (r = 0·38; p=0·0022) and soluble thrombomodulin (r = 0·38; p=0·0078) among all patients. In all patients, soluble thrombomodulin concentrations greater than 3·26 ng/mL were associated with lower rates of hospital discharge (22 [88%] of 25 patients with low concentrations vs 13 [52%] of 25 patients with high concentrations; p=0·0050) and lower likelihood of survival on Kaplan-Meier analysis (hazard ratio 5·9, 95% CI 1·9-18·4; p=0·0087). INTERPRETATION: Our findings show that endotheliopathy is present in COVID-19 and is likely to be associated with critical illness and death. Early identification of endotheliopathy and strategies to mitigate its progression might improve outcomes in COVID-19. FUNDING: This work was supported by a gift donation from Jack Levin to the Benign Hematology programme at Yale, and the National Institutes of Health.


Subject(s)
Betacoronavirus/pathogenicity , Blood Coagulation Disorders/pathology , Coronavirus Infections/complications , Endothelium, Vascular/pathology , Pneumonia, Viral/complications , Vascular Diseases/pathology , Adult , Aged , Aged, 80 and over , Biomarkers/metabolism , Blood Coagulation Disorders/etiology , Blood Coagulation Disorders/metabolism , COVID-19 , Coronavirus Infections/virology , Critical Illness , Cross-Sectional Studies , Endothelium, Vascular/metabolism , Female , Follow-Up Studies , Humans , Intensive Care Units , Male , Middle Aged , Pandemics , Pneumonia, Viral/virology , Prognosis , SARS-CoV-2 , Vascular Diseases/etiology , Vascular Diseases/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL